A limited temporal window for the derivation of multilineage repopulating hematopoietic progenitors during embryonal stem cell differentiation in vitro.

نویسندگان

  • N Hole
  • G J Graham
  • U Menzel
  • J D Ansell
چکیده

Embryonal stem cells have been shown to differentiate in vitro into all hematopoietic lineages. This has been used successfully as one approach to the study of genetic events occurring during haematopoiesis. However, studies on the commitment of mesodermal precursors to the hematopoietic lineage have been limited due to the inability to define a system in which embryonal stem (ES) cells will give rise to primitive hematopoietic stem cells in vitro. Using a colony forming assay (CFU-A), we determined that the earliest time point at which primitive multilineage hematopoietic precursors can be detected during ES cell differentiation in vitro in the absence of exogenous conditioned medium or stromal cell culture is 4 days. Lethally irradiated adult recipient mice that received differentiated ES cells from this time point survived for more than 3 weeks; and in two out three experiments, peripheral blood from these animals contained ES-derived progeny. Fluorescence activated cell sorting (FACS) found ES-derived CD45+ hematopoietic cells in both lymphoid and myeloid compartments at 12 weeks posttransplantation, suggesting that the population of day 4 differentiated ES cells contains primitive hematopoietic precursors. A preliminary RT-PCR analysis of gene expression around this time point suggests that there are very few hematopoietic cells present. This approach should prove useful in studies of genetic control of commitment to and maintenance of hematopoietic lineages in vitro and in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo.

Human hematopoietic stem cells are defined by their ability to repopulate multiple hematopoietic lineages in the bone marrow of transplanted recipients and therefore are functionally distinct from hematopoietic progenitors detected in vitro. Although factors capable of regulating progenitors are well established, in vivo regulators of hematopoietic repopulating function are unknown. By using a ...

متن کامل

Human fetal bone marrow early progenitors for T, B, and myeloid cells are found exclusively in the population expressing high levels of CD34.

Experimentation on human stem cells is hampered by the relative paucity of this population and by the lack of assays identifying multilineage differentiation, particularly along the lymphoid lineages. In our current study, phenotypic analysis of low-density fetal bone marrow cells showed two distinct populations of CD34+ cells: those expressing a high density of CD34 antigen on their surface (C...

متن کامل

In Vivo Repopulating Activity Emerges at the Onset of Hematopoietic Specification during Embryonic Stem Cell Differentiation

The generation of in vivo repopulating hematopoietic cells from in vitro differentiating embryonic stem cells has remained a long-standing challenge. To date, hematopoietic engraftment has mostly been achieved through the enforced expression of ectopic transcription factors. Here, we describe serum-free culture conditions that allow the generation of in vivo repopulating hematopoietic cells in ...

متن کامل

A review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell

Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...

متن کامل

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 1996